The role of Geographical Information Systems in support of State Water Cadastre on the example of Kashkadarya region, Uzbekistan

Lazizbek Ibragimov, Akmal Gafurov

ABSTRACT: Geographical Information Systems (GIS) based maps are vital important in water sector and its development plays a key role in modernizing water cadastre systems. Measuring and storing of any water related infrastructure will help to better recording of existing assets and proper management. GIS systems and tools are key instrument to automate processes in State Water Cadastre to increase functionality and information exchange in digital form which helps to handle easy analytical research and technical activities (Arshavir Avagyan, et al., 2014). The GIS data helps to easily understand water features in spatial view and attributive data can be regularly updated by local government officials.

KEY WORDS: GIS, Water Cadastre, digital data

I. INTRODUCTION

Last two – three decades a GIS being heavily involved in development of digital data and support to state water cadastre with the aim of increasing efficiency and future sustainability in recording of water related assets (Wolfgang, et al.,). Digital data are base for creating of digital cadastral maps to make easy for decision makers for better understanding of the existing conditions in any given study area. According to the paper (Moha ELAYACHI, et al., 2014) the digital cadastral maps should be introduced with a detail information with attributes where map units can also clearly stored. This system is therefore required because of its accuracy and timely management of assets. The cadastral maps were prepared as analogue in the past and it is efficient management factor were very low due to its scale in paper view and difficulties in term of updating any single maps. Today, as information technologies are growing rapidly, there is a need for robust systems in recording, storing and manipulating of water related features in digital form. Kashkaarya region in the republic of Uzbekistan is one of the densely irrigated zone where water management requires proper data generation and wise management as digital form. Attributive data and digital maps can help to the region improving its capacity in development of proper water cadastre. This will help decision makers making timely decisions for future sustainability of existing infrastructures and objects in the region.

II. STUDY AREA

Kashkadarya Region is one of the province of the republic of Uzbekistan which is located in the south-eastern part of the country in the basin of the Kashkadarya river basin and on the western slopes of the Pamir-Atay mountains. This region borders with two central Asian country Tajikistan and Turkmenistan, and with other local provinces of Uzbekistan which are Samarkand, Bukhara and Surkhandarya. It covers an area of 28,400 km² (wikipedia). Water resources are mainly from Amudarya and Kashadarya rivers. There is water related infrastructures in both rivers and inner canals where water infrastructure is coordinated by state organizations. Below map shows location of study area and its districts coded with numbers which is typical image of cadastral maps.
III. DATA AND MATERIALS

Information related to water resources are collected from local government and they are classified according to feature types and its functionality. This information can be stored in digital form using GIS application to make them well classified and stored for visual interpretation and better management. This has to be done with a good design and with feature type orders. Below is a list of information for one sample feature collected and which needs to be well designed.

1. Karshi Main Canal (KMC)
2. Place of location
3. Water intake
4. Purpose of the canal
5. Capacity
6. Condition
7. Length
8. Construction #1
9. Operation start date
10. Under balance of
11. Inventarization date
12. Renovation date

IV. METHODOLOGY

Although information related to any water related features are available, they have to be designed wisely so that recording, storing, manipulation and monitoring of any features should be easy and manageable. Therefore, GIS tool can be selected as a powerful application in digital cadastral mapping. This will allow representing all raw data in

Copyright to IJARSET www.ijarset.com 14496
meaningful way and easy to understanding of a particular asset. Each raw data has been classified and ordered based on their functions and role. There is mainly following water features:

1. Main river
2. Main canal
3. Interfarm canals
4. Collector and drainages

In each features there are plenty of infrastructure which needs to be digitized and formed as digital cadastral maps.

```
Data collection from field and local officials

Old cadastral analogue maps scanned and transferred into computer system

Records from each features in the study area

Digitizing each data indicating properties of each feature characteristics

Establishing record sheets in the attribute and registering ownerships
```
V. EXPERIMENTAL RESULTS

Once this process is completed, information in the GIS system should be able to show all data including ownerships as an automated view. This is a table where all related records will be visualized to be able to easily understand and get full info.

<table>
<thead>
<tr>
<th>Karshi Main Canal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Short name (KMC)</td>
<td></td>
</tr>
<tr>
<td>FID</td>
<td>0</td>
</tr>
<tr>
<td>Cadastral Number</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>Location</td>
<td>Kashkadarya province</td>
</tr>
<tr>
<td>Water intake</td>
<td>Amudarya River</td>
</tr>
<tr>
<td>Ownership</td>
<td>Basin Irrigation Authority</td>
</tr>
<tr>
<td>Purpose</td>
<td>For irrigation</td>
</tr>
<tr>
<td>Water discharge capacity</td>
<td>220 m³/s</td>
</tr>
<tr>
<td>Canal condition</td>
<td>Concrete/earthen</td>
</tr>
<tr>
<td>Length</td>
<td>86 km</td>
</tr>
<tr>
<td>Command area</td>
<td>260 ha</td>
</tr>
<tr>
<td>Start date</td>
<td>1965</td>
</tr>
</tbody>
</table>

Fig. 3. Results of attribute table
Above map shows how the system works actually. For instance, when you use info tool in GIS application, it will automatically have illustrated corresponding datasets and information of any given feature. So this way all other feature will have background information to visually interpretation and further monitoring of existing assets.

VI. CONCLUSION AND FUTURE WORK

The results providing more realistic results database for cadastral mapping and recording of feature datasets including institutional aspects. Due to limited data in electronic version it is difficult in terms of working with computer based datasets. Therefore, this kind of efforts and activities should be scaled up across region in order to get information in digital format of all features. Once they are developed in computer system, this will then help users and decision makers to find right path and make proper decisions. This attempt can be considered as initial step and can be even more modernized and enhanced so that there is a good water cadastre information system established. It is recommended that this could be baseline study which can be improved further.

REFERENCES


Wolfgang W. Effenberg, Stig Enemark, Ian P. Williamson, Framework for discussion of digital spatial data flow within cadastral systems. (2014). Department of Geomatics the University of Melbourne, Australia


CAWATER info, Kashkadarya province, http://www.cawater-info.net/kashkadarya/index_e.htm
Mr. Lazizbek Ibragimov is a PhD student at the Samarkand State Institute of Architecture and Construction. His research interests connected with digital cadastral mapping and data recording of water related assets. He has actively participated in several international and local seminars and conferences.

Mr. Akmal Gafurov is a PhD student at the scientific research hydro meteorological institute in Tashkent, Uzbekistan. His research interests are connected with water resources management and develop adaptation strategies in developing countries. He has actively participated and presented in several different conferences related to his research are in the region.